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Abstract

Bayesian modeling helps applied researchers articulate assumptions about their
data and develop models tailored for specific applications. Thanks to good methods
for approximate posterior inference, researchers can now easily build, use, and revise
complicated Bayesian models for large and rich data. These capabilities, however, bring
into focus the problem of model criticism. Researchers need tools to diagnose the fitness
of their models, to understand where they fall short, and to guide their revision. In this
paper we develop a new method for Bayesian model criticism, the holdout predictive
check (hpc). hpcs are built on posterior predictive checks (ppcs), a seminal method
that checks a model by assessing the posterior predictive distribution on the observed
data. However, ppcs use the data twice—both to calculate the posterior predictive and
to evaluate it—which can lead to uncalibrated 𝑝-values. hpcs, in contrast, compare the
posterior predictive distribution to a draw from the population distribution, a heldout
dataset. This method blends Bayesian modeling with frequentist assessment. Unlike
the ppc, we prove that the hpc is properly calibrated. Empirically, we study hpcs on
classical regression, a hierarchical model of text data, and factor analysis.

1 Introduction

Thanks to good algorithms for approximate Bayesian inference and good software for general
Bayesian modeling, statisticians can now explore and develop a large variety of Bayesian
models for a given problem. This new ease with which we can model data has turned
the practice of Bayesian modeling into an iterative cycle (Blei, 2014; Gelman et al., 1995,
2020). More complex models are constructed from simpler ones, and we can evaluate
earlier model “drafts” to guide the structure of subsequent revisions. But this iterative
process for model-building brings into sharp focus the problem of model criticism. How
do we navigate the space of models we can use for a problem? How do we decide when
a model needs to change? In this paper, we develop the holdout predictive check (hpc), a
new method of model criticism.

One of the key tools for Bayesian model criticism is the posterior predictive check (ppc) (Guttman,
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1967; Rubin, 1984). In a ppc, we locate the observed data within the posterior predictive
distribution, a reference distribution that is determined by the model under consideration.
The spirit of a ppc is to formalize the following heuristic: “If my model is good, then its
posterior predictive distribution will generate data that looks like my observations (filtered
through a diagnostic function).”

Consider an observed dataset 𝒚obs and a model with latent variables 𝜽 ,

p(𝜽 , 𝒚obs) = p(𝜽)p(𝒚obs | 𝜽). (1)

The prior is p(𝜽); the likelihood is p(𝒚obs | 𝜽). The model and data combine to form the
posterior p(𝜽 | 𝒚obs), which helps form the posterior predictive distribution,

p(𝒚rep | 𝒚obs) =
∫

p(𝒚rep | 𝜽)p(𝜽 | 𝒚obs) d𝜽 . (2)

Here the variable 𝒚rep denotes replicated data.

To implement a ppc, we first choose a diagnostic statistic 𝑑 (𝒚), a way to measure discrepancy
between a dataset 𝒚 and the model. An example diagnostic is the average squared distance
to the posterior mean, 𝑑 (𝒚) = 1

𝑛

∑𝑛
𝑖=1(𝑦𝑖 − E [𝑌 | 𝒚])2. The ppc then locates 𝑑 (𝒚obs) in the

reference distribution of 𝑑 (𝒚rep), the posterior predictive from Equation 2. One common
approach is with a posterior predictive 𝑝-value,

𝑝ppc = p(𝑑 (𝒚rep) ≥ 𝑑 (𝒚obs) | 𝒚obs). (3)

Bayarri and Morales (2003) discusses other ways to measure surprise, and Gelman et al.
(1996); Gelman (2004) discuss visual approaches to checking the model.

But there is a crucial issue with the ppc—it uses the data twice. The data are first used to
construct the reference distribution of the diagnostic, the posterior predictive distribution
of Equation 2. The data are then used again in the observed diagnostic 𝑑 (𝒚obs), which is
located within the reference, such as with the 𝑝-value of Equation 3. Essentially, a ppc
checks how “close” 𝑑 (𝒚obs) is to 𝑑 (𝒚rep), a quantity that also depends on 𝒚obs. The issue is
that they can be close regardless of whether the model is correct.

This paper introduces a solution to this “double use of the data” problem. The holdout
predictive check (hpc) is a new method for Bayesian model criticism, one that combines the
Bayesian ppc with the frequentist idea of the population distribution. The premise of the
hpc is this: “If my model is good, then data drawn from the posterior predictive distribution
will look like a draw from the population distribution.”

Along with the data, model, and posterior predictive, consider new data drawn from the
true population distribution 𝒚new ∼ 𝐹. The hpc locates 𝑑 (𝒚new) in the posterior predictive
distribution of 𝑑 (𝒚rep). As a 𝑝-value, a hpc is

𝑝hpc = p(𝑑 (𝒚rep) ≥ 𝑑 (𝒚new) | 𝒚obs, 𝒚new), (4)

where 𝒚rep ∼ p(𝒚rep | 𝒚obs). This quantity no longer uses the data twice.
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To implement a hpc, we split the data into 𝒚 = (𝒚obs, 𝒚new), assuming 𝒚new is an independent
draw from the population distribution. We then calculate Equation 4. As with the ppc, the
modeler can use other measures of surprise or visual checks. Figure 1 displays a schematic
which relates the hpc to both the prior predictive check (Box, 1980) and the ppc (Guttman,
1967; Rubin, 1984).

Why should a modeler avoid the double use of the data? Why prefer the hpc of Equation 4
to the ppc of Equation 3? We can understand the consequences of this practice by examining
some of the frequentist properties of a predictive check. Suppose we repeatedly sample an
observed dataset, and then check a model; note this is a frequentist situation. We define a
model to be “correct” when its posterior predictive distribution is equal to (or approaches)
the distribution of the observations; this is the conceit for both a ppc and a hpc.

Now consider the sampling distribution of the ppc 𝑝-value. There are two consequences of
its double use of the data. First, this 𝑝-value may result in an incorrect model not being
rejected; in the language of testing, it can suffer from low power. Second, this 𝑝-value may
not control the type I error; it may not be calibrated. We will show below that the hpc
𝑝-value does not suffer from these issues. Theoretically, under certain assumptions, we
prove that it is calibrated. In the infinite data limit, and in a specific setup, the hpc rejects
an incorrect model with probability one, while calibrated versions of the ppc (Robins et al.,
2000; Hjort et al., 2006) fail to reject the incorrect model. Empirically, we study the hpc in
several modeling situations. We find that it is better calibrated than the ppc and that it has
higher power—a hpc more easily detects an incorrect model than either a ppc or calibrated
ppcs (Robins et al., 2000; Hjort et al., 2006).

The paper is organized as follows. Section 1.1 discusses the historical development of
Bayesian model evaluation and how hpcs fit in. Section 2 develops the hpc and provides
an illustrative example. Section 3 proves that the hpc 𝑝-value is calibrated. Section 4
illustrates how the “double use of the data” affects the power of ppcs, unlike the hpc.
Further, calibrating ppcs does not resolve this power issue. Section 5 demonstrates the hpc
empirically on a regression model, a hierarchical document model, and models for factor
analysis. Section 6 concludes the paper.

1.1 Related work

This work builds on predictive checks, which are part of the larger literature on Bayesian
model criticism. Predictive checks locate the observations in a model-based distribution
of data, the reference distribution. A brief history: Inspired by the earlier ideas of Geisser
(1975), Box (1980) used the prior predictive distribution as the reference. This is a prior pre-
dictive check, which is useful for checking the conflict between prior and likelihood (Evans
and Moshonov, 2006). Later, Rubin (1984) mimicked Box’s framework, but replaced the
prior predictive with the posterior predictive; this strategy is both more practical for di-
agnosing models and one that is, in Rubin’s language, “Bayesianly justifiable.” Guttman
(1967) proposed the same approach. Finally, Gelman et al. (1996) showed how to develop
diagnostic functions of the data—termed realized discrepancy functions—that depend on
both a data set and the latent variables.
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Figure 1: A schematic diagram that relates Box (1980), Rubin (1984), and this paper.
This diagram posits the data come from an unknown population distribution. Box (1980)
uses the data as reference in the marginal distribution induced by the model (top); Rubin
(1984) uses the data as reference in the posterior predictive distribution induced by the
model (middle); our method uses a draw from the population as a reference in the posterior
predictive distribution (bottom).
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To resolve the “double use” problem, researchers have proposed a range of strategies. One
strand of research proposes to calibrate a posterior predictive check (ppc) 𝑝-value post-
hoc by using its empirical distribution (Robins et al., 2000; Hjort et al., 2006). However,
calibration by itself does not necessarily improve the power of the check, as we will show
in Sections 4 and 5.

Alternatively, Bayarri and Berger (2000) proposes the partial predictive check. The partial
predictive check calculates a predictive reference distribution that does not depend on the
diagnostic, thereby removing the correlation between the diagnostic and the reference.
Consequently, the partial predictive check is calibrated (Bayarri and Berger, 2000; Robins
et al., 2000). Finally, Johnson (2007) proposed to use pivotal diagnostics to ensure the
diagnostic and reference distribution are uncorrelated.

The holdout predictive check (hpc) can be viewed as a prior predictive check where the
prior is updated based on a subset of the data. Note that this idea of using data-dependent
priors was also applied to the idea of intrinsic Bayes factors (Berger and Pericchi, 1996).
The intrinsic Bayes factor first calculates a posterior using only a subset of the data. This
posterior is then treated as a prior, and the Bayes factor is calculated using the remaining
data. In a similar way, the hpc first calculates the posterior given the observed data, and
then treats this posterior as a prior in a prior predictive check of the new data.

The hpc also has close connections to the partial predictive check (Bayarri and Berger,
2000). Specifically, when the partial PC diagnostic uses only a subset of the data, the
partial PC can coincide with the hpc (see Appendix D for an example). In certain cases, a
partial posterior check which computes the diagnostic with only a subset of the data may
be more efficient than a hpc. This efficiency is because a partial predictive check may
only remove a sufficient statistic of this subset of the data, instead of the entire subset as
in the hpc. A drawback of the partial predictive check, however, is that it can be difficult
to calculate, and requires re-calculation for each diagnostic function. Meanwhile, a hpc
is simple to implement, and the inferred posterior can be used to check many different
diagnostic functions. A further limitation of the partial predictive check is that it can revert
to the prior predictive check when the diagnostic contains the sufficient statistics of the
model (see Appendix D for an example).

Another closely related work is Gelfand et al. (1992), which develops cross-validated
checks. A cross-validated check iteratively holds out each data point, conditioning on
the remaining data, and compares samples from the corresponding posterior predictive
distribution to the held-out point. Similar strategies are discussed in Draper (1996); Marshall
and Spiegelhalter (2003); Larsen and Lu (2007). In its relation to these other data-split
checks, this paper provides a theoretical understanding and empirical evaluation for this
class of methods.

In an independent and concurrent paper, Li and Huggins (2022) empirically shows that a
previous definition of the hpc (pop-pc, see Appendix B for details) is not calibrated, and
proposes the split predictive check (spc). In revising this paper, we proved the pop-pc is
not calibrated, which we have resolved by updating it to the hpc in Equation 5. This hpc is
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the same as the single spc of Li and Huggins (2022), and the proof here that it is calibrated
(Theorem 1) is also similar to the proof of calibration in Li and Huggins (2022) for the spc
(their Theorem 3.1(1) for the case where the model is true). (The proofs are similar because
both build on the work of Robins et al. (2000).)

Li and Huggins (2022) and this paper present similar methods, but complementary perspec-
tives. Li and Huggins (2022) shows the spc has asymptotic power of 1 under moderate-
to-major model misspecification. It also proposes the divided spc, which considers spc
𝑝-values for multiple different splits of the data. In this paper, we examine the “double use
of the data” problem of the ppc in greater detail. Specifically, we illustrate that post-hoc em-
pirical calibration procedures for the ppc, while producing uniform 𝑝-values under the null
hypothesis, do not resolve the “double use of the data” problem in terms of detecting model
misspecification. Finally, we consider different diagnostics from Li and Huggins (2022) -
the 𝜒2 diagnostic and latent Dirichlet allocation log-likelihood - and we provide empirical
evidence that they are calibrated; these diagnostics are not covered by the calibration theory
for the hpc, nor the spc.

Finally, the hpc relates to metrics which assess generalization error, though it is also
distinct from these ideas. Assuming a stationary data generating process, the hpc asks:
does my model produce data that “looks like” future independent draws from this process?
This binary outcome is in contrast to continuous metrics, such as the widely applicable
information criterion (WAIC, Watanabe, 2009, 2010) or the deviance information criterion
(DIC, Spiegelhalter et al., 2002). While the WAIC and DIC can be used to select from
multiple models, they do not assess the adequacy of a single model, which is of interest in
this work.

2 Holdout Predictive Checks

The holdout predictive check (hpc) checks a Bayesian model by considering a true pop-
ulation distribution: “If my model is good then data drawn from the posterior predictive
distribution will look like a draw from the true population (filtered through a diagnostic
function).”

The ingredients of a hpc are observed data 𝒚obs, replicated data 𝒚rep from the posterior
predictive distribution (Equation 2), and new data 𝒚new, drawn from the true population
distribution 𝐹. As for a posterior predictive check (ppc), each check involves a diagnostic
statistic 𝑑 (𝒚), which measures misfit between 𝒚 and the model. The hpc uses new data 𝒚new

to check if a draw from the population 𝐹 is close to the posterior predictive distribution
p(𝒚rep | 𝒚obs), in terms of the diagnostic. If so, then the posterior predictive captures the
data well, and the model passes the check.

Definition 1 (Holdout predictive check, hpc) Consider observed data 𝒚obs, its posterior
predictive distribution p(𝒚rep | 𝒚obs), and a diagnostic statistic 𝑑 (𝒚). Suppose we have 𝒚new

drawn from the population distribution of the data. As a 𝑝-value, the holdout predictive
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check is:

𝑝hpc = p(𝑑 (𝒚rep) ≥ 𝑑 (𝒚new) | 𝒚obs, 𝒚new), (5)

where 𝒚rep ∼ p(𝒚rep | 𝒚obs).

To implement a hpc, we split the data into 𝒚 = (𝒚obs, 𝒚new) and calculate Equation 5.

The diagnostic is a function of the data that measures model misfit. For example, one
diagnostic is the conditional negative log-likelihood,

𝑑 (𝒚) ≜ −1
𝑛

𝑛∑︁
𝑖=1

log p(𝑦𝑖 | 𝒚obs). (6)

In the context of a ppc, this diagnostic is discussed in Lewis and Raftery (1996).

Algorithm 1: Holdout predictive check

input: data 𝒚 = {𝒚obs, 𝒚new}, diagnostic 𝑑 (·), # replicates 𝑅
output: holdout predictive check 𝑝-value
for 𝑟 = 1, . . . , 𝑅 do

draw samples from the posterior 𝜃𝑟 ∼ p(𝜃 |𝒚obs);
draw posterior predictive data 𝒚

rep
𝑟 ∼ p(𝒚rep |𝜃);

compute the empirical hpc 𝑝-value

𝑝hpc =
1
𝑅

𝑅∑︁
𝑟=1

1
[
𝑑 (𝒚rep

𝑟 , 𝜃𝑟) > 𝑑 (𝒚new, 𝜃𝑟)
]

;

return 𝑝hpc

Meng (1994); Gelman et al. (1996) discuss realized diagnostics 𝑑 (𝒚, 𝜃), those that also
depend on the latent variables. A realized diagnostic measures the strength of the connection
between latent variables and a data set. An example is the negative log-likelihood

𝑑 (𝒚, 𝜃) ≜ − log p(𝒚 | 𝜃). (7)

Consider a joint distribution of latent variables and data,

p(𝜃, 𝒚) = p(𝜃)p(𝒚 | 𝜃) (8)

and a realized diagnostic 𝑑 (𝜃, 𝒚). The hpc is

𝑝hpc = p(𝑑 (𝜃, 𝒚rep) > 𝑑 (𝜃, 𝒚new) | 𝒚obs, 𝒚new). (9)

This probability is under a distribution that draws the latent variable from the posterior and
the replicated data from the likelihood given the latent variable,

p(𝜃, 𝒚rep | 𝒚obs) = p(𝜃 | 𝒚obs)p(𝒚rep | 𝜃). (10)

The hpc procedure is detailed in Algorithm 1.
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2.1 Example

To illustrate the hpc, we now apply a ridge regression model to synthetic data. The model
is:

𝜽 ∼ Normal(0, 𝑐𝑰𝑝), (11)
𝜎2 ∼ Inverse-Gamma(1/2, 1/2), (12)

𝑦𝑖 |𝜽 , 𝜎2 𝑖𝑖𝑑∼ Normal(𝜽⊤𝒙𝑖, 𝜎2), 𝑖 = 1, . . . , 𝑛. (13)

We take 𝑛 = 50 and 𝑝 = 100. The covariates, 𝒙𝑖, are drawn as uniform random variables on
[0, 1]. Meanwhile, the true coefficients, 𝜃, have five entries equal to 3.5 and the remaining
95 entries drawn from a standard normal distribution. Consequently, the coefficients 𝜃 have
many entries close to zero, and a few large entries. The true 𝜎2 = 1 (note that 𝜎2 is treated
as unknown during inference, however).

What is the impact of the prior variance parameter 𝑐 on the adequacy of the model? If 𝑐 is
too large, the estimated coefficients will overfit to the data and not generalize well on new
data. Here, we show that a hpc can detect this poor model fit while a ppc cannot. Note
that we are not advocating to use the hpc to choose 𝑐; we are merely emphasizing that in
the well-studied setting of ridge-regression, the hpc can detect poor model fit while the ppc
cannot.

To check the model, we use the 𝜒2 diagnostic function:

𝑑 (𝒚, 𝜽 , 𝜎2) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − E[𝑦𝑖 |𝜽 , 𝜎2])2

Var(𝑦𝑖 |𝜽 , 𝜎2)
, (14)

which is a sum of standardized residuals. We conduct posterior inference using a Gibbs
sampler.

Figure 2 shows the hpc and ppc 𝑝-values for different values of 𝑐. Also plotted is the mean
squared error:

MSE = E
[
(𝜃0 − 𝜃)2] (15)

where the expectation is with respect to the posterior p(𝜃 |𝒚, 𝑿) and 𝜃0 is the true value of
the coefficents.

When 𝑐 is small, there is more regularization of the coefficient estimates. This regularization
prevents overfitting and results in small mean squared error. For these small values of 𝑐,
both the ppc and hpc both correctly retain the model. When 𝑐 is large, however, there is less
regularization of the coefficients. Consequently, the model overfits to the data and the MSE
is large. For these large values of 𝑐, the hpc correctly rejects the model. The ppc, however,
does not reject the model; the ppc does not detect overfitting, unlike the hpc.
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Regression Example

Figure 2: When the log prior variance 𝑐 is small, both the hpc and ppc correctly retain the
model; when 𝑐 is large, the hpc correctly rejects the model, while the ppc incorrectly retains
the model.

3 The asymptotic distribution of HPC 𝑝-values

In this section, we study the holdout predictive check (hpc) 𝑝-value asymptotic sampling
distribution. If a 𝑝-value is uniformly distributed when the model is correct, the 𝑝-value is
said to be calibrated. For a class of diagnostic functions, we prove that the hpc 𝑝-value is
calibrated (Theorem 1).

Calibration is a frequentist property, not a Bayesian one. Although the hpc checks Bayesian
models, it is still important to determine if its 𝑝-values are calibrated. Calibration helps us
interpret a 𝑝-value: If the distribution of 𝑝-values is uniform, a 𝑝-value of 0.4 would not
be surprising, while if the distribution was concentrated around 0.5, the value 0.4 would be
surprising. For a calibrated check, if we decide to reject a model when its 𝑝-value is less
than 𝛼, then the correct model will only fail such a check with that probability.

Before stating our hpc calibration result, we introduce some notation. The data are 𝒚 =

(𝑦1, . . . , 𝑦𝑛) where 𝑦𝑖 are mutually independent random variables with density 𝑓 (𝑦; 𝜃)
where 𝜃 ∈ Θ ⊂ R𝑝.

We prove the hpc is calibrated for the same class of diagnostic functions 𝑑 (𝒚) that are
considered by Robins et al. (2000). Specifically, we consider diagnostic functions 𝑑 (𝒚) that
are asymptotically normal with asymptotic mean 𝜈(𝜃) and asymptotic variance 𝜎2(𝜃) when
the model is correct (i.e. the density of 𝒚 is 𝑓 (𝒚; 𝜃)):

𝑛1/2
[
𝑑 (𝒚) − 𝜈(𝜃)

𝜎(𝜃)

]
{ 𝑁 (0, 1), (16)

where{ denotes convergence in distribution.

Theorem 1 proves that the hpc 𝑝-values are asymptotically uniform when the model is
correct. Unlike the posterior predictive check (ppc), the hpc 𝑝-values are calibrated. Note
our result relies on standard regularity conditions that are detailed in Appendix A.1.

Theorem 1 Assume Equation 16 holds and assume the regularity conditions detailed in
Appendix A.1. Under the distribution 𝑓 (𝒚; 𝜃0), the hpc 𝑝-value can be written as:

𝑝hpc(𝒚) = 1 −Φ(𝑄) + 𝑜𝑃 (1), (17)
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where 𝑜𝑃 (1) denotes a random variable converging to zero in probability, Φ is the standard
normal cdf, and 𝑄 ∼ 𝑁 (0, 1). Consequently, the hpc 𝑝-values are calibrated.

The proof of Theorem 1 is in Appendix A.1.

Theorem 1 proves that hpc 𝑝-values are calibrated for realized diagnostics that are asymptot-
ically normal. In experiments (Section 5) we consider diagnostics that are not asymptotically
normal, including the 𝜒2 diagnostic and the log-likelihood of latent Dirichlet allocation (Blei
et al., 2003). With these diagnostics, we show empirically the hpc still has good calibration
properties.

3.1 Data splitting for the HPC

We acknowledge that splitting the data may reduce power to detect model misspecification.
This reduction in power may be avoided by using a PPC with a diagnostic that is independent
of the model parameters. However, it can be difficult to verify such independence, and so
the HPC allows practitioners more flexibility in diagnostic choice.

A separate aspect of data splitting is that the value of 𝑝hpc will depend on the particular split
of the data. However, Theorem 1 provides an asymptotic guarantee that 𝑝hpc is uniformly
distributed over any split of the data. Further, in finite sample settings, our experiments
show that the HPC is approximately uniform.

Finally, we note that the hpc data splitting requirement limits us to diagnostic functions that
can be calculated on a split of the data–we are unable to use diagnostics that depend jointly
on all observations.

4 A comparison of predictive checks

In the previous section, we studied the holdout predictive check (hpc) 𝑝-value distribution
when the model is correct. In this section, we consider a specific model and diagnostic
function to illustrate the properties of the hpc 𝑝-value when the model is incorrect. Under
this setup, we show the hpc has high power–it detects this model misfit with probability one
in the infinite data limit, while the posterior predictive check (ppc) and calibrated versions
of the ppc (Robins et al., 2000; Hjort et al., 2006) cannot detect this model misfit; that is,
calibration by itself cannot improve the power of a test.

The setup is: we have data 𝒚obs = {𝑦𝑖}𝑛𝑖=1 for which we posit a Gaussian model:

𝑦𝑖 ∼ 𝑁 (𝜇, 𝜎2), 𝑖 = 1, . . . , 𝑛 (18)

with unknown mean 𝜇 ∈ R and known 𝜎2.

We want to check the suitability of this Gaussian model with a Bayesian predictive check.
Unlike in a frequentist hypothesis test, the parameters of the model are not set to pre-
specified values. That is, in Equation 18 we are not checking a specific value of the mean
𝜇, but the appropriateness of the Gaussian model.
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In this section, we consider a specific alternative data distribution that would not fall in the
Gaussian model (Equation 18), so we can explicitly compare the power of predictive checks.
This data distribution is a Cauchy distribution with location 𝑥0 ∈ R and scale 𝛾 = 1:

𝑦𝑖 ∼ Cauchy(𝑥0, 1), 𝑖 = 1, . . . , 𝑛. (19)

Specifically, we analyze how the ppc, calibrated ppcs and the hpc perform when checking the
Gaussian model (Equation 18) if the underlying data is actually Cauchy (Equation 19).

We use a mean diagnostic function: 𝑑 (𝒚obs) = 𝒚obs. We chose this diagnostic function as it
results in an analytic form for the ppc. This analytic form allows us to demonstrate clearly
how the ppc fails to detect model misfit. While there are other choices of diagnostic function
for which the ppc will detect model misfit in this scenario (e.g. the maximum), our main
point is that the hpc will avoid the failure modes of the ppc no matter the choice of diagnostic
function, allowing for more flexibility in diagnotic choice for practictioners.1

4.1 Posterior predictive checks

We first consider the distribution of the ppc 𝑝-value with the mean diagnostic which checks
the Gaussian model in Equation 18. We show that this particular ppc 𝑝-value is degenerate
at 0.5 regardless of whether the data is Gaussian or Cauchy. This degeneracy of the ppc
𝑝-value is problematic for both calibration and power. Specifically, the ppc 𝑝-value is not
uniform and thus not calibrated. Further, the ppc has low power - it cannot detect model
misfit when the data is actually Cauchy.

For a prior on 𝜇, we take 𝜇 ∼ 𝑁 (𝜇0, 𝜎
2
0 ) with fixed hyperparameters 𝜇0 ∈ R, 𝜎2

0 ∈ R+.

Concretely, the posterior predictive 𝑝-value with diagnostic 𝑑 (𝒚obs) = 𝒚obs is:

𝑝ppc = p(𝑑 (𝒚rep) > 𝑑 (𝒚obs) |𝒚obs) = 1 −Φ

(
𝒚obs − 𝜌𝑛𝒚obs − (1 − 𝜌𝑛)𝜇0√︁

(1 + 𝜌𝑛)𝜎2/𝑛

)
, (20)

where 𝜌𝑛 = 𝜎2
0 /(𝜎

2
0 + 𝜎2/𝑛) (for details, see Appendix C).

Ideally, the ppc would check some aspect of model misfit. However, the ppc in Equation 20
is only checking how “close” the posterior mean E[𝜇 |𝒚obs] = 𝜌𝑛𝒚obs + (1 − 𝜌𝑛)𝜇0 is to the
MLE 𝒚obs. Whether the posterior mean is close to the MLE is a property of the model,
unrelated to the fit of the model to the data. That is, the posterior mean can be close to the
MLE, whether or not the underlying data is actually Gaussian.

To further illustrate this problem with the ppc, consider the asymptotic distribution of 𝑝ppc.
In Equation 20, the numerator is 𝒚obs − 𝜌𝑛𝒚obs − (1− 𝜌𝑛)𝜇0 = 𝑂 (1/𝑛) and the denominator
is 𝑂 (1/

√
𝑛). Consequently, the integrand goes to zero as 𝑂 (1/

√
𝑛) and the 𝑝ppc converges

to 0.5. What is important to note is that 𝑝ppc converges to 0.5 regardless of whether the data
is Gaussian or Cauchy.

1Others have also used the mean diagnostic to check a normal model (see, for example, the ‘8 Schools’
example in Section 6.5, Gelman et al. (2013)).
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4.2 Empirically calibrated PPCs can have low power

To fix the calibration of ppc 𝑝-values, a number of post-processing strategies have been
proposed (Robins et al., 2000; Hjort et al., 2006). In this section, we show that such post-hoc
calibration techniques do not improve the power of the ppc to detect model misfit.

Essentially, these calibration techniques cannot detect model misfit because for any random
variable, we can calibrate it by using its cdf to transform it to a uniform distribution. If the
original random variable does not detect model misfit, this transformation will not provide
additional power to detect model misfit.

We make the above point more concrete by again considering Equation 18 and analyzing
the following two post-hoc calibration methods:

• Robins et al. (2000) proposed to locate the observed ppc 𝑝-value in the empirical
distribution of the ppc 𝑝-values. The empirical distribution of the ppc 𝑝-values is
calculated by treating draws from the posterior predictive as replicates from the true
model and then calculating their ppc 𝑝-values.

• Hjort et al. (2006) also propose to locate the observed ppc 𝑝-value in an empirical
reference distribution. Unlike Robins et al. (2000), however, Hjort et al. (2006)
use draws from the prior predictive distribution to calculate an empirical reference
distribution (instead of draws from the posterior predictive).

First, we show that for the mean diagnostic, the Robins et al. (2000) empirically calibrated
ppc 𝑝-value has the same distribution regardless of whether the data is Gaussian or Cauchy.
Consequently, the check cannot detect model misfit.

The Robins et al. (2000) empirically calibrated ppc 𝑝-value is

p
(
ppc(𝒚rep) > ppc(𝒚obs) |𝒚obs

)
. (21)

To compute this empirically calibrated 𝑝-value, we first need to determine the empirical
distribution of ppc(𝒚rep)–these are the ppc values when 𝒚rep is treated as an observed dataset.
We use the notation 𝒚rep,rep to denote a draw from the posterior predictive distribution
conditioned on 𝒚rep; that is, the posterior predictive where 𝒚rep is “observed data”. More
specifically, ppc(𝒚rep) is calculated as

ppc(𝒚rep) = 1
𝑅

𝑅∑︁
𝑟=1

1(𝒚rep,rep
𝑟 > 𝒚rep), 𝒚

rep,rep
𝑟 ∼ p(𝒚rep,rep |𝒚rep), (22)

with 𝑅 draws from the posterior predictive distribution. Now, suppose 𝜌𝑛 → 1. Then,√
𝑛(𝒚rep,rep − 𝒚rep) |𝒚rep ∼ 𝑁 (0, 2𝜎2). In this case, the probability that 𝒚rep,rep is greater than

its mean is 0.5 and so the sum of indicators is a binomial random variable:
𝑅∑︁
𝑟=1

1(𝒚rep,rep
𝑟 > 𝒚rep) ∼ Binomial(𝑅, 0.5). (23)

12



With the normal approximation to the binomial distribution,

p
(
ppc(𝒚rep) > ppc(𝒚obs) |𝒚obs

)
= 1 −Φ

(
2
√
𝑅

[
ppc(𝒚obs) − 0.5

] )
. (24)

To determine the distribution of the empirically calibrated ppc, consider the distribution of
ppc(𝒚obs). Similarly to Equation 23, for large 𝑅,

2
√
𝑅[ppc(𝒚obs) − 0.5] ∼ 𝑁 (0, 1), (25)

again using the normal approximation to the binomial distribution. Then, the empirically
calibrated ppc is uniform:

p
(
ppc(𝒚rep) > ppc(𝒚obs) |𝒚obs

)
∼ 𝑈 [0, 1] . (26)

The key point is that the calibrated ppc is uniform regardless of whether the data is Gaussian
or Cauchy. This is because for both data distributions, we have

√
𝑛(𝒚rep,rep − 𝒚rep) |𝒚rep ∼

𝑁 (0, 2𝜎2) and
√
𝑛(𝒚rep − 𝒚obs) |𝒚obs ∼ 𝑁 (0, 2𝜎2). In other words, here, the empirically

calibrated ppc does not depend on the underlying distribution of 𝒚obs and so it cannot detect
model misfit.

We now show that Hjort et al. (2006)’s calibrated 𝑝-value (cppp) also has the same distribu-
tion regardless of whether the data is Gaussian or Cauchy. Consequently, the check cannot
detect model misfit.

The cppp is:

p(ppc(𝒚) > ppc(𝒚obs) |𝒚obs), where 𝒚 ∼ p(𝒚; 𝜃), 𝜃 ∼ p(𝜃), (27)

and ppc(·) is defined in Equation 22.

Similarly to Equation 23,

𝑅 · ppc(𝒚) =
𝑅∑︁
𝑟=1

1(𝒚rep
𝑟 > 𝒚) ∼ Binomial(𝑅, 0.5), (28)

where 𝒚
rep
𝑟 ∼ p(𝒚rep |𝒚).

Following a similar argument to the empirically calibrated ppc of Robins et al. (2000),

p(ppc(𝒚) > ppc(𝒚obs) |𝒚obs) ∼ 𝑈 [0, 1] . (29)

Again, this will hold for regardless of whether the data is Gaussian or Cauchy and so the
cppp will fail to detect model misfit.

In Section 5, we consider a linear regression example and demonstrate that these post-
processing techniques yield calibrated ppc 𝑝-values, but that these 𝑝-values fail to detect
model misspecification. In contrast, the hpc is calibrated and does detect model misspeci-
fication.
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4.3 Comparison with holdout predictive checks

We have reviewed the “double use of the data” problem with ppcs, which can result in both
uncalibrated 𝑝-values and minimal power to detect model misfit. These 𝑝-values can be
empirically calibrated, but the calibration procedures do not necessarily improve the power
of the test. In contrast, the hpc can detect model misspecification in situations where a ppc
or calibrated ppc cannot.

Consider the example in Equation 18. When the data is actually Gaussian, the hpc 𝑝-value
is:

p(𝑑 (𝒚rep) > 𝑑 (𝒚new) |𝒚obs, 𝒚new) = 1 −Φ

(
𝒚new − 𝜌𝑛𝒚obs − (1 − 𝜌𝑛)𝜇0√︁

(1 + 𝜌𝑛)𝜎2/𝑛

)
. (30)

As 𝑛→ ∞, we have
√
𝑛[𝒚new − 𝜌𝑛𝒚obs − (1 − 𝜌𝑛)𝜇0] ∼ 𝑁 (0, 2𝜎2). (31)

Then,

p(𝑑 (𝒚rep) > 𝑑 (𝒚new) |𝒚obs, 𝒚new) = 1 −Φ(𝑍), (32)

where 𝑍 ∼ 𝑁 (0, 1), and so the hpc 𝑝-value is uniform and calibrated. (This is an example
of the more general calibration result proved in Theorem 1).

Now suppose the data is actually Cauchy (Equation 19). Then, we have 𝒚new − 𝒚obs ∼
Cauchy(0, 2). We prove that the hpc has asymptotic power of one–that is, hpc will reject
the Gaussian model if the data is actually Cauchy with probability one. Let 𝑧𝛼 denote the
𝛼-quantile of a standard Gaussian distribution. Then for the two-sided hpc, the power at
rejection level 𝛼 is:

Power = p

(
Φ

(
𝒚new − 𝒚obs√︁

2𝜎2/𝑛

)
≤ 𝛼/2

)
+ p

(
Φ

(
𝒚new − 𝒚obs√︁

2𝜎2/𝑛

)
≥ 1 − 𝛼/2

)
(33)

= p

(
𝒚new − 𝒚obs ≥ 𝑧1−𝛼/2

√︂
2𝜎2

𝑛

)
+ p

(
𝒚new − 𝒚obs ≤ 𝑧𝛼/2

√︂
2𝜎2

𝑛

)
(34)

𝑛→∞→ 1. (35)

To further illustrate these points, the empirical distributions of the ppc, calibrated ppc and
hpc for the simple mean example are displayed in Figure 3. We see the ppc is concentrated
around 0.5 both when the data is Gaussian and when the data is Cauchy. Moreover, the
calibrated ppc is uniform for both Gaussian- and Cauchy-distributed data. In contrast, the
hpc is uniform when the data is Gaussian, and concentrated around 0 when the data is
Cauchy. That is, the hpc detects model misspecification while the ppc or calibrated ppc do
not.
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(a) Distribution of 𝑝-values when the data is Gaussian (Equation 18).
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(b) Distribution of 𝑝-values when the data is Cauchy (Equation 19).

Figure 3: In the Gaussian mean example, the hpc detects model misspecification (i.e. when
the data is actually Cauchy) while the ppc and calibrated ppc do not.

4.4 Choosing diagnostic functions

We showed that the ppc for checking a Gaussian model with a mean diagnostic is degenerate,
even under the alternative hypothesis when the true data distribution is Cauchy.

In general, when does this degeneracy occur for ppc 𝑝-values? The ppc becomes degenerate
when the diagnostic is perfectly correlated with the model parameters (Robins et al., 2000).
More specifically, let 𝜃 (𝒚obs) be the posterior mean of the model parameters, conditioned
on the observed data. Then under the conditions of Theorem 1:

• if the diagnostic 𝑑 (𝒚obs) is perfectly correlated with 𝜃 (𝒚obs), then the ppc will converge
to 0.5 under both the null and alternative hypothesis;

• if the diagnostic is independent of 𝜃 (𝒚obs), the ppc 𝑝-values are uniformly distributed
under the null hypothesis and thus calibrated (Robins et al., 2000).

However, it is often difficult to determine the degree of association between 𝜃 (𝒚obs) and
𝑑 (𝒚obs), and thus difficult to assess whether the ppc will detect model misfit. In contrast,
we proved that the hpc is calibrated for all normally-distributed diagnostic functions (The-
orem 1). This result allows the hpc much more flexibility in the choice of diagnostic than
the ppc.

The choice of diagnostic function also has implications for the power of the test. For
the Gaussian/Cauchy example studied in this section, the mean diagnostic can detect model
misfit because under𝐻0, 𝒚new−𝒚obs ∼ 𝑁 (0, 2), while under𝐻1, 𝒚new−𝒚obs ∼ Cauchy(0, 2)–
interestingly, it is the variance in the mean diagnostic that allows us to detect model
misfit.

Other choices of diagnostic functions will also change the power of the test. As a trivial
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example, if we had chosen 𝑑 (𝒚) = 𝑐 for some constant 𝑐, the distribution of 𝑑 (𝒚) would be
the same under both 𝐻0 and 𝐻1 and so we cannot detect model misfit.

As a final example of how the diagnotic function may affect power, suppose we take
𝑑 (𝒚) = max 𝒚. When will we have the same distribution of the test-statistic under both 𝐻0
and 𝐻1? This may occur if the models in 𝐻0 and 𝐻1 are such that their maxima converge to
the same distribution. This is possible given the extreme value theorem, which tells us that
for a variety of distributions, the distribution of their maxima is either Gumbel, Fréchet or
Weibull.

5 Empirical Study

We study holdout predictive checks on a regression model, a hierarchical model of docu-
ments, and a factor model.

• In the regression model study:

(i) We show empirically that the holdout predictive check (hpc) detects overfitting
when there is insuficient regularization. In contrast, the posterior predictive
check (ppc), as well as the calibration suggestions of Robins et al. (2000) and
Hjort et al. (2006), do not detect overfitting when there is insufficient regular-
ization.

(i) We show empirically that the hpc 𝑝-values are approximately uniform when the
model has sufficient regularization (i.e. the hpc is calibrated). In contrast, the
ppc 𝑝-values are not calibrated.

• For the hierarchical model of documents:

(i) On synthetic data, we show empirically that the hpc 𝑝-values are approximately
uniform when the data actually comes from the model (i.e. the hpc is calibrated).

(i) On a collection of documents from the New York Times, we show that the hpc
detects model misfit due to overfitting, while the ppc does not.

• In the factor model study:

(i) When the model is correct, we show empirically that the hpc 𝑝-values show
much greater variability than the ppc 𝑝-values, which are centered around 0.5.

(i) When the model is incorrect, we show that the hpc correctly reject the model at
a much higher rate than the ppc.

5.1 Bayesian Ridge Regression

In this section, we return to the regression example in Section 2.1. We now compare the
hpc with a variety of methods for Bayesian model criticism for a range of different values
of the prior variance 𝑐. Again, we set 𝑛 = 50 and 𝑝 = 100.
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Figure 4: Bayesian ridge regression: hpc detects overfitting when there is little regulariza-
tion (large 𝑐), while the ppc (including calibrated versions) does not. (a) average 𝑝-values
over different 𝑐 from ppc, calibrated ppcs (Robins et al., 2000; Hjort et al., 2006), hpc and
prior PC. (b) mean squared error of fitted model (Equation 13) over different values of 𝑐.

In the large 𝑐 scenario, we expect that a posterior predictive check will not be able to detect
the overfitting of the data. Moreover, as discussed in Section 4, we expect the calibration
strategies of Robins et al. (2000) and Hjort et al. (2006) will also not detect this overfitting.
In contrast, we expect that a holdout predictive check will be able to detect overfitting,
and reject the model with large prior variance values. Recall that we are not using the
hpc to choose the value of the regularization parameter 𝑐; we are simply emphasizing that
when there is clear overfitting, the hpc is able to detect this poor model fit, while the ppc
cannot.

We also consider prior predictive checks (Box, 1980).

As anticipated, the ppc 𝑝-values are constant for all values of the regularization parameter,
𝑐; that is, the ppc cannot detect model misfit for large values of 𝑐 (Figure 4(b)). Moreover,
the two calibrated ppcs (Robins et al., 2000; Hjort et al., 2006) also cannot detect this model
misfit. Meanwhile, the hpc retains the model for small values of 𝑐. For large values of
𝑐, the hpc rejects the model as it overfits to the observed data. The prior predictive check
exhibits similar behavior to the hpc, but it does not begin to reject the model until larger
values of 𝑐.

We next consider the variability of the 𝑝-values from the predictive checks. As anticipated
by the theoretical results of Robins et al. (2000), the ppc 𝑝-value is tightly concentrated
around 0.5 for all values of 𝑐 (Figure 5b). Meanwhile, the empirical calibration procedures
of Robins et al. (2000); Hjort et al. (2006) give 𝑝-values with greater variability around
0.5, as expected from the calibration process; however, they still do not reject the model for
large 𝑐 (Figure 5b). In contrast, the hpc 𝑝-values show greater variability around 0.5 for
small values of 𝑐 and then concentrate around 0 for large values of 𝑐 (Figure 5a).

The empirical distribution of the hpc 𝑝-values are displayed in Figure 6. The 𝑝-values
are approximately uniform for small values of 𝑐. This provides empirical evidence for the
calibration of hpc 𝑝-values with the 𝜒2-diagnostic. For large values of 𝑐, the 𝑝-values
concentrate around 0; that is, the hpc has high power to detect model misfit. Additional his-
tograms and QQ-plots of the 𝑝-value distributions for all methods are in Appendix E.
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Figure 5: Bayesian ridge regression: (a) When the model is not overfit, the hpc 𝑝-values
are much more variable than ppc 𝑝-values, which concentrate around 0.5. When the model
is overfit, hpc 𝑝-values detect this overfitting while ppc 𝑝-values do not. (b) Calibrated
ppc 𝑝-values are much more variable than the ppc; however, the calibrated ppc does not
detect overfitting for large 𝑐. For both (a) and (b), lower and upper lines show 0.025 and
0.975 quantiles of 𝑝-values over 𝐾 = 100 replicates for different values of the regularization
parameter 𝑐; middle line shows mean.

In theory, the hpc is calibrated for asymptotically normal diagnostic statistics (Theorem 1).
In this regression example, the diagnostic statistic is 𝜒2 distributed, not normal. Although
our theory does not extend to this diagnostic, we showed empirically that the hpc has good
calibration properties.

5.2 Topic Modeling

We next study hpcs on latent Dirichlet allocation (lda) (Blei et al., 2003), a hierarchical
model of documents. We first apply LDA to synthetic data and show empirically the hpc
has good calibration properties. We then apply LDA to a collection of documents from the
New York Times and show that the hpc detects model misfit due to overfitting.

lda models documents as mixtures over latent topics, where each topic is a distribution
over words. The 𝑘th topic is denoted by 𝛽𝑘 = {𝛽𝑘𝑣}𝑉𝑣=1, where 𝑉 ∈ N is the number of
unique words in the corpus, and the number of topics ranges from 𝑘 = 1, . . . , 𝐾 . The topics
are drawn as:

𝛽𝑘 ∼ Dirichlet(𝛼1𝑉 ), 𝑘 = 1, . . . , 𝐾, (36)

where 𝛼 ∈ R+ is a hyperparameter.

For the 𝑑th document, the generative process is:

1. Draw the topic proportions 𝜃𝑑 ∼ Dirichlet(𝛼1𝐾)

2. For words 𝑛 = 1, . . . , 𝑁𝑑:

(a) Draw a topic 𝑧𝑑𝑛 ∼ Multinomial(𝜃𝑑)
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Figure 6: Bayesian ridge regression: hpc 𝑝-values are approximately uniform when there
is no overfitting (small 𝑐); then, the hpc detects when there is overfitting (large 𝑐). Left:
Histograms of hpc 𝑝-values. Right: QQ-plots comparing the quantiles of the hpc 𝑝-values
with the quantiles of a uniform[0,1] random variable. Plots are over 𝐾 = 100 replications
of the data.

(b) Draw a word conditioned on the topic 𝑤𝑑𝑛 ∼ Multinomial(𝛽𝑧𝑑𝑛)

We set the Dirichlet hyperparameter to 𝛼 = 0.1 on both the topics and the document
proportions.

For the model check diagnostic, we will use the log-likelihood. For document 𝑑, the
log-likelihood is:

ℓ(𝒘𝑑; 𝜃𝑑 , 𝜷) =
𝑉∑︁
𝑣=1

[
𝑁𝑑∑︁
𝑛=1

1(𝑤𝑑𝑛 = 𝑣)
]

log

(
𝐾∑︁
𝑘=1

𝛽𝑘𝑣𝜃𝑑𝑘

)
. (37)

To calculate the ppc 𝑝-value, we first calculate the posterior expectation of the global
topics 𝜷 = E[𝜷|𝒘] where 𝒘 is a heldout set of documents. Then, we estimate the lo-
cal per-document parameters, {𝜃𝑑}𝐷𝑑=1, and draw replicates from the posterior predictive
distribution. The per-document ppc is:

ppc(𝒘obs
𝑑 ) = 1

𝑅

𝑅∑︁
𝑟=1

1[ℓ(𝒘rep
𝑑,𝑟
, 𝜃𝑑,𝑟 , 𝜷) > ℓ(𝒘obs

𝑑 , 𝜃𝑑,𝑟 , 𝜷)], (38)

where (𝒘rep
𝑑,𝑟
, 𝜃𝑑,𝑟) ∼ 𝑝(𝒘rep

𝑑
|𝜃𝑑 , 𝜷)𝑝(𝜃𝑑 |𝒘obs

𝑑 , 𝜷). (39)

Note that the topic vector 𝜷 is fixed as the estimate from the heldout corpus; the above PPC
is checking the fit of the model based on the document topic proportions 𝜃𝑑 .

To calculate the hpc 𝑝-value, we split each document in half: 𝒘𝑑 = {𝒘obs
𝑑
, 𝒘new

𝑑
}𝐷
𝑑=1. Here,

we split the data at the document level because for each document, we need to infer the
local variable, 𝜃𝑑 . Half of the document is used to infer this per-document variable, while
the other half is used to check the model:

hpc(𝒘obs
𝑑 , 𝒘new

𝑑 ) = 1
𝑅

𝑅∑︁
𝑟=1

1[ℓ(𝒘rep
𝑑,𝑟
, 𝜃𝑑,𝑟 , 𝜷) > ℓ(𝒘new

𝑑 , 𝜃𝑑,𝑟 , 𝜷)], (40)

where (𝒘rep
𝑑,𝑟
, 𝜃𝑑,𝑟) ∼ 𝑝(𝒘rep

𝑑
|𝜃𝑑 , 𝜷)𝑝(𝜃𝑑 |𝒘obs

𝑑 , 𝜷). (41)
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Figure 7: Simulated LDA data: when the model is true, hpc 𝑝-values are approximately
uniform while ppc 𝑝-values are not. Left: Histograms of hpc and ppc 𝑝-values. Right:
QQ-plots comparing the quantiles of the hpc and ppc 𝑝-values with the quantiles of a
uniform[0,1] random variable.

5.3 Synthetic data

We investigate the distribution of hpc and ppc 𝑝-values when the data is drawn from the
LDA generative process with 𝐾 = 10 topics and 𝑉 = 2500 vocabulary of unique words.
The number of words (tokens) in each document is drawn as 𝑁𝑑 ∼ Poisson(𝜉) where
𝜉 = 300.

We draw 100, 000 documents and infer the topics 𝛽 using stochastic variational inference
(Hoffman et al., 2013) with minibatches of size 100. Given the topics 𝛽, we then compare
the ppc and hpc on a heldout set of documents of size 𝐷 = 1, 000.

For each document, we calculate the ppc and hpc 𝑝-values using the log-likelihood diag-
nostic with 𝑅 = 500 replicates from the posterior predictive distribution. The hpc 𝑝-values
are approximately uniformly distributed while the ppc 𝑝-values are left-skewed (Figure 7).
This provides empirical evidence that the hpc is calibrated for the LDA log-likelihood
diagnostic.

5.4 New York Times

We consider a corpus of 100,000 news documents with a vocabulary size of 5,000 unique
words from the New York Times. To infer the topics 𝛽, we implement stochastic variational
inference (Hoffman et al., 2013) with minibatches of size 100. Given the topics 𝛽, we then
compare the ppc and hpc on a set of documents of size 1,000.

For each document, we calculate the ppc and hpc 𝑝-values using the log-likelihood diag-
nostic averaged over documents, where for each document we draw 𝑅 = 500 replicates from
the posterior predictive distribution.

As the number of topics increases to 𝐾 = 1, 000, the ppc 𝑝-value remains close to 0.5,
and the negative log-likelihood is monotonically decreasing (Figure 8). At 𝐾 = 1, 000, the
number of topics is equal to the size of the vocabulary; at this stage, the model assigns each
word to its own topic, memorizing the data. The hpc 𝑝-value detects this overfitting, and
begins to reject the model past 𝐾 = 200 topics (Figure 8 left).
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Figure 8: On the New York Times data, the hpc detects model overfitting, rejecting the
model when the number of topics is large. In contrast, the ppc never rejects the model. Left:
hpc and ppc 𝑝-values for different values of topics 𝐾 . Right: Negative log-likelihood on
observed and holdout data over different values of topics 𝐾 .

Again, we are not using the hpc to choose the number of topics𝐾; we are simply emphasizing
that when there is clear overfitting, the hpc is able to detect this poor model fit, while the
ppc cannot.

Note that when the number of topics is small, the hpc does not reject the model. A similar
phenomenon was noted in Moran et al. (2022) for a Gaussian mixture model when the
number of mixtures components is fewer than the truth. When the number of mixture
components is too few, the entropy of the posterior predictive distribution increases to fit
the data. The draws from this posterior distribution can be extreme relative to the true
model, making it difficult to distinguish model misfit.

5.5 Factor Analysis

In this section, we study the hpc for factor analysis, using examples similar to Moran et al.
(2022). We fit probabilistic principal component analysis (PPCA, Tipping and Bishop,
1999) to (i) data drawn from a well-specified linear model and (ii) data drawn from a
nonlinear model for which PPCA is not well-specified. We show empirically that:

• ppc 𝑝-values are not calibrated and have low power to detect the poor fit of the
nonlinear model;

• hpc 𝑝-values, while not exactly calibrated, avoid the degeneracy of the ppc 𝑝-values
when the model is correct. When the model is incorrect, the hpc has much higher
power than the ppc.

Data generating process

The observed data is 𝒙𝑖 ∈ R𝐺 , 𝑖 = 1, . . . , 𝑁 . We assume that 𝒙𝑖 has some low dimensional
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representation 𝒛𝑖 ∈ R𝐾 with

𝒙𝑖 = 𝑓 (𝒛𝑖) + 𝜺𝑖 (42)

for some function 𝑓 : R𝐾 → R𝐺 and noise term 𝜺𝑖 ∈ R𝐺 . We will consider two cases: (i)
𝑓 is set to a linear function and (ii) 𝑓 is set to a nonlinear function.

Model

Probabilistic PCA (Tipping and Bishop, 1999) assumes that 𝑓 is a linear mapping from the
low-dimensional latent representation to the observed data,

𝒙𝑖 = 𝑾𝒛𝑖 + 𝜺𝑖, 𝜺𝑖 ∼ 𝑁 (0, 𝜎2𝑰).

The latent variables are assigned a normal prior, 𝒛𝑖 ∼ 𝑁 (0, 𝑰). We fit 𝑾 and representations
𝒛𝑖 using the EM algorithm.

According to Equation 42, when 𝑓 is linear, PPCA should adequately fit the data. In contrast,
when 𝑓 is nonlinear, PPCA does not have the requisite complexity to fit the data.

Diagnostic function

To check the model, we use the likelihood diagnostic. For PPCA, this is:

𝑑ppca(𝒙; 𝒙obs) =
𝑁∑︁
𝑖=1

1

2𝜎2
∥𝒙𝑖 − �̂�E[𝒛 |𝒙𝑖, �̂�] ∥2, where (�̂�, �̂�2) = arg max

𝑾,𝜎2
log 𝑝(𝒙obs |𝑾, 𝜎2)

(43)

and E[𝒛𝑖 |𝒙𝑖, �̂�, �̂�2] = 𝑴−1�̂�𝑇𝒙𝑖, 𝑴 = �̂�𝑇�̂� + �̂�2𝑰. (44)

Then, the empirical ppc and hpc are:

𝑝ppc =
1
𝑅

𝑅∑︁
𝑟=1
I[𝑑 (𝒙rep; 𝒙obs) > 𝑑 (𝒙obs; 𝒙obs)]; (45)

𝑝hpc =
1
𝑅

𝑅∑︁
𝑟=1
I[𝑑 (𝒙rep; 𝒙obs) > 𝑑 (𝒙new; 𝒙obs)] . (46)

5.5.1 Linear data generating process

We first consider the setting where 𝑓 is linear. We set the number of samples to 𝑁 = 1000,
the number of observed features to 𝐺 = 11 and the latent dimension as 𝐾 = 6. The data is
generated as

𝒙𝑖 = 𝑾𝒛𝑖 + 𝜺𝑖,
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Figure 9: Factor analysis example. Top row: when the model is correctly specified (linear),
the hpc avoids the degeneracy of the ppc around 0.5. Bottom row: when the model is
incorrect (nonlinear), the hpc has higher power than the ppc to reject the model.

where 𝒛𝑖 ∼ 𝑁 (0, 𝑰), 𝜺𝑖 ∼ 𝑁 (0, 𝜎2𝑰) with true 𝜎2 = 1. (Note however that 𝜎2 is treated as
unknown in the inference stage). The matrix 𝑾 is the matrix,

𝑾⊤ =

©«
5 5 5 0 0 0 0 0 0 0 0
0 0 5 5 5 0 0 0 0 0 0
0 0 0 0 5 5 5 0 0 0 0
0 0 0 0 0 0 5 5 5 0 0
0 0 0 0 0 0 0 0 5 5 5

ª®®®®®¬
.

In this setting, the ppc is centered around 0.5 (Figure 9, top row). Meanwhile, the hpc,
while not perfectly calibrated, avoids this degeneracy issue of the ppc.

5.5.2 Nonlinear data generating process

We next consider the setting where the true mapping 𝑓 from the factors to the observed data
is nonlinear. Here, we expect PPCA to be a poor fit for the nonlinear model. We set the
number of samples to 𝑁 = 1000, the number of observed features to 𝐺 = 6 and the latent
dimension to 𝐾 = 2. The data is generated from

𝒙𝑖 = (𝑧𝑖1, 2𝑧𝑖1, 3𝑧2𝑖1, 4𝑧𝑖2, 5𝑧𝑖2, 6 sin(𝜋/2 · 𝑧𝑖2))⊤ + 𝝐𝑖, (47)

where 𝒛𝑖 ∼ 𝑁 (0, 𝑰), 𝜺𝑖 ∼ 𝑁 (0, 𝜎2𝑰) with true 𝜎2 = 1. That is, the first three columns of 𝒙
are related to the first factor and the next three columns are related to the second factor.

In this setting, the ppc 𝑝-values have a median of 0.09 and reject the model only 12.6% of
the time (Figure 9, bottom row). Meanwhile, the hpc rejects the model 63.2% of the time
(Figure 9, bottom row). That is, the hpc empirically has much higher power than the ppc to
detect the inadequacy of PPCA for modeling the nonlinear data generating process.
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6 Discussion

We developed holdout predictive checks (hpcs), a diagnostic tool that brings together
Bayesian methods for model checking with frequentist estimation of goodness of fit. The
hpc assesses a Bayesian model by comparing samples from the posterior predictive to a
sample from the population distribution, which in practice is a holdout dataset. We proved
that the hpc is calibrated for a class of asymptotically normal diagnostic functions and
empirically show its calibration for other diagnostics. We revisited the “double use of
the data” issue of posterior predictive checks (ppcs) and highlighted that while post-hoc
procedures can be used to calibrate the ppc, post-hoc calibration does not provide power
to detect model misfit. Finally, we demonstrated the utility of hpcs with Bayesian linear
regression models, on probabilistic topic models of documents, and on factor analysis.

There are several areas for further research. For hierarchical models of grouped data,
Marshall and Spiegelhalter (2003) define mixed predictive checks, where the reference
distribution combines the prior for the group-specific latent variables with the posterior for
latent variables shared across groups. This approach mitigates the issues of a ppc, but there
are no guarantees; a mixed predictive check can still be uncalibrated or have low power if the
influence of the posterior becomes too large. To avoid these issues, Bayarri and Castellanos
(2007) extends the checks of Bayarri and Berger (2000) to hierarchical models. How to
extend the hpc to these situations is one avenue of further research.

Generalizing beyond hierarchical models, researchers have studied how to check individual
components of a probabilistic model, i.e., individual nodes in a directed graphical model.
O’Hagan (2003) proposes some of the earlier ideas along these lines, though in a way that
uses the data twice and leads to an uncalibrated check. To correct this lack of calibration,
his predictive checks for individual components of a model have been extended, often by
using data splitting (Marshall and Spiegelhalter, 2007; Bayarri and Castellanos, 2007; Dahl
et al., 2007; Gåsemyr and Natvig, 2009; Presanis et al., 2013). Again the hpc proposed here
could be extended to these settings.
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A Proofs

A.1 Proof of calibration of the holdout predictive check

In this section, we prove Theorem 1. Recall that we assume the diagnostic 𝑑 (𝒚) is asymp-
totically normal with asymptotic mean 𝜈(𝜃) and asymptotic variance 𝜎2(𝜃), under the null
hypothesis that the density of 𝒚 is 𝑓 (𝒚; 𝜃):

𝑛1/2
[
𝑑 (𝒚) − 𝜈(𝜃)

𝜎(𝜃)

]
{ 𝑁 (0, 1), (48)

where{ denotes convergence in distribution.

Notation. We let p(𝜃 |𝒚) denote the posterior distribution of 𝜃. We use ∥·∥ to denote the
total variation distance between two distributions 𝑃 and𝑄. The Fisher information is

𝐼 (𝜃) = lim
𝑛→∞

𝑛−1E𝜃
[
−𝜕2 log 𝑓 (𝒚; 𝜃)/𝜕𝜃𝜕𝜃′

]
. (49)

We use the notation 𝑦𝑛 = 𝑂𝑝 (𝑎𝑛) as 𝑛 → ∞ to mean 𝑦𝑛/𝑎𝑛 is stochastically bounded: for
any 𝜀 > 0, there exists finite 𝑀 > 0 and 𝑁 > 0 such that

p( |𝑦𝑛/𝑎𝑛 | > 𝑀) < 𝜀, ∀𝑛 > 𝑁. (50)

We use 𝜙(𝜃; 𝜇, Σ) to denote the density of a 𝑁 (𝜇, Σ) random variable.

Regularity conditions.
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1. The asymptotic mean 𝜈 is continuously differentiable in a neighborhood of (0, 𝜃),
with partial derivatives converging to limit:

¤𝜈(𝜃0) = lim
𝑛→∞

𝜕𝜈𝑛 (0, 𝜃)/𝜕𝜃
��
𝜃=𝜃0

. (51)

2. For some 𝑝-vector-valued function 𝜃 (𝒚) on the sample space, we assume

∥p(·|𝒚) − 𝑁 (𝜃 (𝒚), 𝐼−1(𝜃0)/𝑛)∥
𝑃𝜃0→ 0 (52)

and

𝑛1/2(𝜃 (𝒚) − 𝜃0) = 𝑂𝑃𝜃0
(1). (53)

Proof of Theorem 1. Our proof technique follows that of Robins et al. (2000) for their
proof of Theorem 3.

The hpc 𝑝-value is:

𝑝(𝒚obs, 𝒚new) =
∫
Θ

p(𝑑 (𝒚rep) > 𝑑 (𝒚new) |𝒚new, 𝜃)p(𝜃 |𝒚obs)𝑑𝜃 (54)

Consider:

𝑑 (𝒚rep) > 𝑑 (𝒚new) (55)
Then,

√
𝑛[𝑑 (𝒚rep) − 𝜈(𝜃)] >

√
𝑛[𝑑 (𝒚new) − 𝜈(𝜃0) − (𝜈(𝜃) − 𝜈(𝜃0))] . (56)

Consider the LHS of Equation 56. By Equation 48, we have that, conditional on 𝜃,
√
𝑛[𝑑 (𝒚rep) − 𝜈(𝜃)] ∼ 𝑁 (0, 𝜎2(𝜃0)).

Consider now the RHS of Equation 56. The first term
√
𝑛[𝑑 (𝒚new) − 𝜈(𝜃0)] is fixed,

conditional on 𝒚new. For the second term, we use a Taylor expansion to obtain:

𝜈(𝜃) − 𝜈(𝜃0) ≈ ¤𝜈(𝜃0) (𝜃 − 𝜃0). (57)

Then by Equation 52, given 𝒚obs, the second term is approximately distributed as

𝑁 ( ¤𝜈(𝜃0)𝑇𝑛1/2(𝜃 (𝒚obs) − 𝜃0), ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0)). (58)

(Note this step using Equation 52 helps resolve the potentially difficult integral over
p(𝜃 |𝒚obs).)

Then, the conditional probability, given 𝒚obs and 𝒚new, of 𝑑 (𝒚rep) > 𝑑 (𝒚new) is approxi-
mately

p(𝑊 > 0|𝒚obs, 𝒚new), (59)

28



where𝑊 is a Gaussian random variable with

E[𝑊 |𝒚obs, 𝒚new] = 𝑛1/2 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0) − 𝑛1/2 [𝑑 (𝒚new) − 𝜈(𝜃0)], (60)
Var(𝑊 |𝒚obs, 𝒚new) = 𝜎2(𝜃0) + ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0). (61)

Then, the hpc 𝑝-value is

𝑝(𝒚obs, 𝒚new) = 1 −Φ

(
𝑛1/2 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0) − 𝑛1/2 [𝑑 (𝒚new) − 𝜈(𝜃0)]√︁

𝜎2(𝜃0) + ¤𝜈(𝜃)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃)

)
+ 𝑜𝑃0 (1),

(62)

where we have used Equation 52.

Now, we consider the distribution of the hpc 𝑝-value over the distributions of 𝒚obs and
𝒚new.

By Equation 53, we have that the posterior mean converges to the true 𝜃0:
√
𝑛 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0) { 𝑁 (0, ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0)). (63)

Independently, 𝑛1/2 [𝑑 (𝒚new) − 𝜈(𝜃0)] converges to a 𝑁 (0, 𝜎2(𝜃0)) distribution.

Hence, the hpc 𝑝-value is:

𝑝(𝒚obs, 𝒚new) = 1 −Φ (𝑄) + 𝑜𝑃0 (1), (64)

where 𝑄 ∼ 𝑁 (0, 1).

This concludes the proof.

B Note on previous version of this paper

The previous version of this paper, Ranganath and Blei (2019), proposed the population
predictive check (population predictive check (pop-pc)). The pop-pc treated 𝒚new as random;
in the current holdout predictive check, 𝒚new is fixed. Treating 𝒚new as fixed results in a
calibrated check, while treating 𝒚new as random does not. For completeness, we include the
previous definition of the pop-pc below.

Definition 2 (Population predictive check (Version 1, 2019)) Consider observed data 𝒚obs,
its posterior predictive distribution p(𝒚rep | 𝒚obs), and a diagnostic statistic 𝑑 (𝒚). Suppose
we have 𝒚new drawn from the population distribution of the data. The population predictive
check as a 𝑝-value is:

𝑝pop−v1 = p(𝑑 (𝒚rep) ≥ 𝑑 (𝒚new) | 𝒚obs), 𝒚new ∼ 𝐹 (65)

where 𝒚rep ∼ p(𝒚rep | 𝒚obs).
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To illustrate the issue with treating 𝒚new as random, we again consider the mean example
in Section 4. Suppose we observe data 𝒚obs = {𝑦𝑖}𝑛𝑖=1 drawn from a Gaussian with known
variance parameter:

𝑦𝑖 ∼ 𝑁 (𝜇, 𝜎2), (66)

for some 𝜇 ∈ R and fixed 𝜎2. For a prior on 𝜇, we take 𝜇 ∼ 𝑁 (𝜇0, 𝜎
2
0 ) with fixed

hyperparameters 𝜇0 ∈ R, 𝜎2
0 ∈ R+.

In this case, the posterior predictive distribution is

𝒚rep |𝒚obs ∼ 𝑁
(
𝜌𝑛𝒚

obs + (1 − 𝜌𝑛)𝜇0, (1 + 𝜌𝑛)
𝜎2

𝑛

)
. (67)

As 𝑛→ ∞, 𝒚rep |𝒚obs is centered around 𝒚obs. This is different from the distribution of 𝒚new,
which is the population distribution: 𝒚new ∼ 𝑁 (𝜇, 𝜎2) (see Figure 10). Consequently, the
pop-pc is not calibrated. We demonstrate this lack of calibration theoretically below.

Consider the distribution of pop-pc when Equation 66 holds:

p(𝑑 (𝒚rep) > 𝑑 (𝒚new) |𝒚obs) = p(𝐷 > 0|𝒚obs), (68)

where 𝐷 = 𝑑 (𝒚rep) − 𝑑 (𝒚new) is a Gaussian random variable with

E[𝐷 |𝒚obs] = 𝜌𝑛𝒚obs + (1 − 𝜌𝑛)𝜇0 − 𝜇, 𝑉𝑎𝑟 (𝐷) =
(
2 + 𝜌𝑛

𝑛

) 𝜎2

𝑛
. (69)

The pop-pc is then:

p(𝐷 > 0|𝒚obs) = 1 −Φ

(
𝜇 − 𝜌𝑛𝒚obs − (1 − 𝜌𝑛)𝜇0√︁

(2 + 𝜌𝑛)𝜎2/𝑛

)
(70)

Now, if the observed data has the same distribution as the new data, we have 𝒚obs ∼
𝑁 (𝜇, 𝜎2/𝑛). Then, for large 𝑛, the pop-pc 𝑝-value (Version 1, 2019) is:

p(𝐷 > 0|𝒚obs) → 1 −Φ

(
𝑍/

√
3
)
, where 𝑍 ∼ 𝑁 (0, 1). (71)

Consequently, the pop-pc is not calibrated.

The updated definition of the hpc in Definition 1 does not have this calibration issue.
Intuitively, this is because a fixed 𝒚new is on average as far from the true mean as the fixed
𝒚obs.

For the more general case of asymptotically normal diagnostic functions, we also prove the
pop-pc is not uniformly distributed.
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Figure 10: The distribution of 𝑑 (𝒚new) = 𝒚new is not equal to the distribution of 𝑑 (𝒚rep) =
𝒚rep. (Data drawn as 𝑦𝑖 ∼ 𝑁 (1, 1), 𝑖 = 1, . . . , 2000).

Theorem 2 We assume Equation 16 holds, in addition to regularity conditions detailed in
Appendix A.1. Under the distribution 𝑓 (𝒚; 𝜃0), the pop-pc 𝑝-value can be written as:

𝑝pop(𝒚) = 1 −Φ(𝑄) + 𝑜𝑃 (1), where 𝑄 ∼ 𝑁
(
0,

¤𝜈𝜃 (𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈𝜃 (𝜃0)
2𝜎2(𝜃0) + ¤𝜈𝜃 (𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈𝜃 (𝜃0)

)
, (72)

where 𝑜𝑃 (1) denotes a random variable converging to zero in probability, Φ is the standard
normal cdf, and 𝑄 ∼ 𝑁 (0, 1).

Consequently, the pop-pc is not calibrated.

Proof of Theorem 2. The pop-pc 𝑝-value is:

𝑝(𝒚obs) =
∫
Θ

p(𝑑 (𝒚rep) > 𝑑 (𝒚new) |𝜃)p(𝜃 |𝒚obs)p(𝒚new |𝜃0)𝑑𝜃 (73)

Consider:

𝑑 (𝒚rep) > 𝑑 (𝒚new) (74)
Then,

√
𝑛[𝑑 (𝒚rep) − 𝜈(𝜃)] >

√
𝑛[𝑑 (𝒚new) − 𝜈(𝜃0) − (𝜈(𝜃) − 𝜈(𝜃0))] . (75)

Consider the LHS of Equation 75. By Equation 48, we have
√
𝑛[𝑑 (𝒚rep) − 𝜈(𝜃)] ∼ 𝑁 (0, 𝜎2(𝜃0)).

Consider now the RHS of Equation 75. The first term is distributed as:
√
𝑛[𝑑 (𝒚new) − 𝜈(𝜃0)] ∼ 𝑁 (0, 𝜎2(𝜃0)). (76)

For the second term, we use a Taylor expansion to obtain:

𝜈(𝜃) − 𝜈(𝜃0) ≈ ¤𝜈(𝜃0) (𝜃 − 𝜃0). (77)

Then by Equation 52, given 𝒚obs, the second term is approximately distributed as

𝑁 ( ¤𝜈(𝜃0)𝑇𝑛1/2(𝜃 (𝒚obs) − 𝜃0), ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0)). (78)

31



(Note this step using Equation 52 helps resolve the potentially difficult integral over
p(𝜃 |𝒚obs).)

Then, the conditional probability, given 𝒚obs, of 𝑑 (𝒚rep) > 𝑑 (𝒚new) is approximately

p(𝑊 > 0|𝒚obs), (79)

where𝑊 is a Gaussian random variable with

E[𝑊 |𝒚obs] = 𝑛1/2 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0), (80)
Var(𝑊 |𝒚obs) = 2𝜎2(𝜃0) + ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0). (81)

Then, the pop-pc 𝑝-value is

𝑝(𝒚obs) = 1 −Φ

(
𝑛1/2 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0)√︁

2𝜎2(𝜃0) + ¤𝜈(𝜃)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃)

)
+ 𝑜𝑃0 (1), (82)

where we have used Equation 52.

Now, we consider the distribution of the pop-pc 𝑝-value over the distribution of 𝒚obs.

By Equation 53, we have that the posterior mean converges to the true 𝜃0:
√
𝑛 ¤𝜈(𝜃0)𝑇 (𝜃 (𝒚obs) − 𝜃0) { 𝑁 (0, ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0)). (83)

Hence, the pop-pc 𝑝-value is:

𝑝(𝒚obs) = 1 −Φ (𝑄) + 𝑜𝑃0 (1), (84)

where 𝑄 is a Gaussian random variable with mean 0 and variance

Var(𝑄) = ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃0) ¤𝜈(𝜃0)
2𝜎2(𝜃0) + ¤𝜈(𝜃0)𝑇 𝐼−1(𝜃) ¤𝜈(𝜃0)

. (85)

This concludes the proof.

C Details for Section 4

Suppose we observe data 𝒚 = {𝑦𝑖}𝑛𝑖=1, 𝑦𝑖 ∼ 𝑁 (𝜇, 𝜎2) where 𝜎2 is known. The prior is taken
to be 𝜇 ∼ 𝑁 (𝜇0, 𝜎

2
0 ).

We consider the posterior predictive 𝑝-value with diagnostic 𝑑 (𝒚) = 𝒚. The posterior
predictive distribution of 𝒚rep is:

𝒚rep |𝒚obs
=

∫
p(𝒚rep |𝜃)p(𝜃 |𝒚obs)𝑑𝜃 (86)

∼ 𝑁
(
𝜌𝑛𝒚

obs + (1 − 𝜌𝑛)𝜇0, (1 + 𝜌𝑛)
𝜎2

𝑛

)
(87)
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where 𝜌𝑛 = 𝑛𝜎2
0 /(𝑛𝜎

2
0 + 𝜎2).

Then, the posterior predictive 𝑝-value is:

p(𝑑 (𝒚𝑟𝑒𝑝) > 𝑑 (𝒚obs) |𝒚obs)) = 1 −Φ

(
𝒚obs − 𝜌𝑛𝒚obs − (1 − 𝜌𝑛)𝜇0√︁

(1 + 𝜌𝑛)𝜎2/𝑛

)
. (88)

D Discussion of the partial predictive check

An alternative method to obtain calibrated 𝑝-values is the partial predictive check of Bayarri
and Berger (2000). The partial PC achieves calibration by calculating a conditional posterior
predictive that is independent of the diagnostic. However, when the diagnostic includes the
sufficient statistics of the model, the partial predictive check essentially becomes a prior
predictive check. To illustrate this point, consider the partial predictive check for the test in
Section 4. The partial predictive check uses the following predictive distribution:

p(𝒚rep |𝜇)p(𝜇 |𝒚obs\𝑑 (𝒚obs)), where p(𝜇 |𝒚obs\𝑑 (𝒚obs)) ∝ p(𝒚obs |𝜇)p(𝜇)
p(𝑑 (𝒚obs) |𝜇)

. (89)

In this example, p(𝜇 |𝒚obs\𝒚obs) is simply the prior on 𝜇, as we are removing the influence of
the sufficient statistic, 𝒚obs. Then, the distribution of the partial posterior predictive is

𝒚rep |𝒚obs\𝑑 (𝒚obs) ∼ 𝑁
(
𝜇0, (𝜎2

0 + 𝜎2)/𝑛
)
. (90)

The partial predictive 𝑝-value is then:

p(𝑑 (𝒚rep) > 𝑑 (𝒚obs) |𝒚obs\𝒚obs) = 1 −Φ
©«

𝒚obs − 𝜇0√︃
(𝜎2

0 + 𝜎2)/𝑛

ª®®¬ . (91)

This is the prior predictive 𝑝-value. That is, if the diagnostic is the only sufficient statistic,
the partial predictive 𝑝-value coincides with the prior predictive 𝑝-value, which is not
calibrated. This does not contradict Robins et al. (2000); Bayarri and Berger (2000),
however, who prove the partial predictive check is calibrated under certain assumptions.
One of these assumptions is that the parameters of the predictive distribution converge to
the MLE, which is not the case here.

However, the partial posterior check is similar to the hpc when the partial diagnostic is
defined to use a subset of the data. In the above example, we could choose 𝑑 (𝒚obs) =

1/(𝑛/2)∑𝑛/2
𝑖=1 𝑦

obs
𝑖
C 𝒚obs

1:𝑛/2 In this case, the conditional posterior is:

p(𝜇 |𝒚obs\𝑑 (𝒚obs)) ∝
exp

{
−1

2
∑𝑛
𝑖=1

[
𝑦obs
𝑖

− 𝜇
]2

}
exp

{
−𝑛

4
[
𝒚1:𝑛/2 − 𝜇

]2
} p(𝜇) (92)

∝
𝑛∏

𝑖=𝑛/2+1
p(𝑦obs

𝑖 |𝜇)p(𝜇). (93)
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For this diagnostic, the partial posterior check is equivalent to the hpc.

In certain cases, the partial posterior check with a data-split diagnostic may be more efficient
in its use of the data than hpc. This is because the hpc will always use a subset of the data
for posterior inference. A partial predictive check meanwhile may only remove a sufficient
statistic of this subset of the data. Despite this, the partial predictive check can be difficult
to calculate, and requires re-calculation for each diagnostic function. Meanwhile, a hpc
is simple to implement, and the inferred posterior can be used to check many different
diagnostic functions.

E Additional details for Section 5

In this section, we provide additional plots for the regression study in Section 5.1.

• Figure 11 shows the empirical distribution of ppc 𝑝-values. The 𝑝-values are con-
centrated around 0.5 for all values of 𝑐.

• Figure 12 shows the empirical distribution of ppc 𝑝-values calibrated following Robins
et al. (2000). While the 𝑝-values are uniform, they show a similar distribution for all
values of 𝑐 and so are unable to detect model misfit.

• Figure 13 shows the empirical distribution of cppp 𝑝-values (Hjort et al., 2006). The
cppp 𝑝-values do not detect model misfit for large 𝑐.

• Figure 6 shows the empirical distribution of the hpc 𝑝-values. For small values
of 𝑐, the hpc 𝑝-values are approximately uniform. For large values of 𝑐, the hpc
𝑝-values concentrate around 0 (i.e. the hpc will always reject the model when there
is insufficient regularization).

log(c) = 0 log(c) = 1 log(c) = 2 log(c) = 3 log(c) = 4

log(c) = −5 log(c) = −4 log(c) = −3 log(c) = −2 log(c) = −1

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

0
3
6
9

0

5

10

15

0
3
6
9

0
4
8

12

0

5

10

0
3
6
9

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

p−value

de
ns

ity

PPC p−values

log(c) = 0 log(c) = 1 log(c) = 2 log(c) = 3 log(c) = 4

log(c) = −5 log(c) = −4 log(c) = −3 log(c) = −2 log(c) = −1

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Uniform[0,1] quantiles

p−
va

lu
e 

qu
an

til
es

QQ−plots: PPC p−values

Figure 11: ppc 𝑝-values are concentrated around 0.5 for all values of the regularization
parameter 𝑐. Left: Histograms of ppc 𝑝-values. Right: QQ-plots comparing the quantiles
of the ppc 𝑝-values with the quantiles of a uniform[0,1] random variable.

34



log(c) = 0 log(c) = 1 log(c) = 2 log(c) = 3 log(c) = 4

log(c) = −5 log(c) = −4 log(c) = −3 log(c) = −2 log(c) = −1

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0
0.5
1.0
1.5

0.0
0.3
0.6
0.9
1.2

0.0
0.5
1.0
1.5

0.0

0.5

1.0

1.5

0.0
0.5
1.0
1.5

0.0
0.3
0.6
0.9
1.2

0.0
0.5
1.0
1.5

0.0

0.5

1.0

1.5

0.0
0.5
1.0
1.5

0.0

0.5

1.0

1.5

p−value

de
ns

ity

PPC (Robins) p−values

log(c) = 0 log(c) = 1 log(c) = 2 log(c) = 3 log(c) = 4

log(c) = −5 log(c) = −4 log(c) = −3 log(c) = −2 log(c) = −1

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Uniform[0,1] quantiles

p−
va

lu
e 

qu
an

til
es

QQ−plots: PPC (Robins) p−values

Figure 12: Calibrated ppc 𝑝-values (Robins et al., 2000) are approximately uniformly
distributed but they do not detect overfitting for large values of the regularization parameter
𝑐. Left: Histograms of calibrated ppc 𝑝-values. Right: QQ-plots comparing the quantiles
of the calibrated ppc 𝑝-values with the quantiles of a uniform[0,1] random variable. Plots
are over 𝐾 = 100 replications of the data.
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QQ−plots: PPC (Hjort) p−values

Figure 13: Calibrated cppp 𝑝-values (Hjort et al., 2006) do not detect overfitting for large
values of the regularization parameter 𝑐. Left: Histograms of cppp 𝑝-values. Right: QQ-
plots comparing the quantiles of the cppp 𝑝-values with the quantiles of a uniform[0,1]
random variable. Plots are over 𝐾 = 100 replications of the data.
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